Research Interests

General goals of research for Professor Glaser and his group are the development of novel theory and experimental methods in nuclear magnetic resonance (NMR) spectroscopy, with applications to structural studies of biopolymers as well as quantum computing.

NMR-Theory

  • Optimal control and bounds of quantum dynamics
    (26, 43, 48, 58, 62, 63, 67, 68, 71, 75, 79, 81, 82, 83, 86, 89, 91, 92, 93, 94, 95, 97, 98, 99, 100)
  • NMR quantum computing
    (50, 53, 55, 56, 57, 58, 62, 68, 69, 71, 74, 75, 81, 82, 83, 99, 100)
  • Coherence transfer functions:
    ▪ effective coupling topologies (20, 35, 95)
        ▫ isotropic mixing (6, 10, 18, 20, 35, 36, 47, 54, 76, 80, 81, 84)
        ▫ planar mixing (35, 39, 66, 76)
        ▫ longitudinal mixing (33, 35)
        ▫ dipolar mixing (49, 51, 59, 61, 70, 72, 85, 87, 90)
        ▫ cylindrical mixing (59, 70)
  • Computer simulation of NMR experiments (SIMONE) (8, 35)
  • Dynamic nuclear polarization (DNP)
  • NMR with para hydrogen (41, 53)

New methods in NMR

Computer-aided design of experimental building blocks

  • Relaxation-optimized pulse elements (ROPE) (75, 83)
  • Cross-correlated relaxation-optimized transfer (CROP) (82, 92)
  • Transverse relaxation-optimized polarization transfer induced by cross-correlation (TROPIC) (98)
  • Computer-aided design of tailor-made NMR experiments (8, 35, 94)
  • Homonuclear Hartmann-Hahn experiments (HOHAHA) (35)
    ▪ Total correlation spectroscopy (TOCSY) (35, 81)
      ▫ Pulse sequences for J coupled spins:
           ▫ GD sequences (broadband TOCSY) (8)
           ▫ Shaped MLEV (Clean TOCSY) (16)
           ▫ Directed TOCSY (27, 32, 33)
           ▫ SIAM-TOCSY (42)
       ▫ Pulse sequences for dipolar coupled spins:
           ▫ MOCCA sequences (61, 70, 73)
           ▫ Clean TOCSY (87)
     ▪ Tailored correlation spectroscopy (TACSY) (7, 13, 20, 35)
         ▫ Pulse sequences:
            ▫ TT sequences (7, 35)
            ▫ CABBY sequences (HNHA-TACSY, DNA-TACSY) (25)
            ▫ ETA-sequences (E.TACSY) (19, 28)
            ▫ G2-MLEV (PLUSH-TACSY) (34)
            ▫ SIAM-TACSY (42, 73)
            ▫ COIN-TACSY (60)
  • Heteronuclear Hartmann-Hahn experiments (HEHAHA) (35)
       ▪ Broadband HEHAHA
          ▫ Pulse sequences:
            ▫ MGS-Sequences (broadband HEHAHA) (23)
            ▫ JESTER sequences (HIHAHA: heteronuclear isotropic mixing) (35, 67)
            ▫ 180°(MLEV-8) (short cycle time) (52)
        ▪ Bandselective HEHAHA
           ▫ Pulse sequences:
              ▫ G2-MLEV (band-selective HEHAHA) (34)
              ▫ TC sequences (Kin-HEHAHA) (37)
  • Rotating frame nuclear Overhauser effect (ROE) (30)
        ▪ Broadband ROESY with optimal suppression of Hartmann-Hahn transfer
            ▫ Pulse sequence:
            ▫ JS-ROESY (24)
  • Coherence order selective coherence transfer (22, 29, 31, 67, 68, 71)
  • Heteronuclear decoupling
        ▪ Bandselective heteronuclear decoupling in liquids
            ▫ Pulse sequence:
            ▫ G3-MLEV (17)
  • Homonuclear decoupling in solids
        ▪ Broadband decoupling
           ▫ Pulse sequences: (11, 15)
  • Broadband pulses (79, 86, 91, 93)
  • Pattern pulses (97)
  • Shaped pulses for bandselective inversion of dipolar coupled spins (12, 14)

Applications to biological macromolecules

  • Peptides and Proteins (4, 9, 38, 40, 42, 64, 65)
  • DNA (5)
  • RNA (27, 32)
  • Oligosaccharides (76, 88, 96)