Forschungsinteressen

 

Die allgemeine Forschungsziele von Professor Glaser und seiner Gruppe liegen in der Entwicklung von neuartigen Theorien und experimentellen Methoden der kernmagnetischen Resonanzspektroskopie (NMR), unter Anwendung von Strukturuntersuchungen von Biopolymeren sowie Quantencomputer.

NMR-Theorie

  • Optimal control and bounds of quantum dynamics
    (26, 43, 48, 58, 62, 63, 67, 68, 71, 75, 79, 81, 82, 83, 86, 89, 91, 92, 93, 94, 95, 97, 98, 99, 100)
  • NMR quantum computing
    (50, 53, 55, 56, 57, 58, 62, 68, 69, 71, 74, 75, 81, 82, 83, 99, 100)
  • Coherence transfer functions:
    ▪ effective coupling topologies (20, 35, 95)
        ▫ isotropic mixing (6, 10, 18, 20, 35, 36, 47, 54, 76, 80, 81, 84)
        ▫ planar mixing (35, 39, 66, 76)
        ▫ longitudinal mixing (33, 35)
        ▫ dipolar mixing (49, 51, 59, 61, 70, 72, 85, 87, 90)
        ▫ cylindrical mixing (59, 70)
  • Computer simulation of NMR experiments (SIMONE) (8, 35)
  • Dynamic nuclear polarization (DNP) ()
  • NMR with para hydrogen (41, 53

Neue NMR-Methoden

Computerunterstützte Darstellung der experimentellen Bausteine

  • Relaxation-optimized pulse elements (ROPE) (75, 83)
  • Cross-correlated relaxation-optimized transfer (CROP) (82, 92)
  • Transverse relaxation-optimized polarization transfer induced by cross-correlation (TROPIC) (98)
  • Computer-aided design of tailor-made NMR experiments (8, 35, 94)
  • Homonuclear Hartmann-Hahn experiments (HOHAHA) (35)
    ▪ Total correlation spectroscopy (TOCSY) (35, 81)
      ▫ Pulse sequences for J coupled spins:
           ▫ GD sequences (broadband TOCSY) (8)
           ▫ Shaped MLEV (Clean TOCSY) (16)
           ▫ Directed TOCSY (27, 32, 33)
           ▫ SIAM-TOCSY (42)
       ▫ Pulse sequences for dipolar coupled spins:
           ▫ MOCCA sequences (61, 70, 73)
           ▫ Clean TOCSY (87)
     ▪ Tailored correlation spectroscopy (TACSY) (7, 13, 20, 35)
         ▫ Pulse sequences:
            ▫ TT sequences (7, 35)
            ▫ CABBY sequences (HNHA-TACSY, DNA-TACSY) (25)
            ▫ ETA-sequences (E.TACSY) (19, 28)
            ▫ G2-MLEV (PLUSH-TACSY) (34)
            ▫ SIAM-TACSY (42, 73)
            ▫ COIN-TACSY (60)
  • Heteronuclear Hartmann-Hahn experiments (HEHAHA) (35)
       ▪ Broadband HEHAHA
          ▫ Pulse sequences:
            ▫ MGS-Sequences (broadband HEHAHA) (23)
            ▫ JESTER sequences (HIHAHA: heteronuclear isotropic mixing) (35, 67)
            ▫ 180°(MLEV-8) (short cycle time) (52)
        ▪ Bandselective HEHAHA
           ▫ Pulse sequences:
              ▫ G2-MLEV (band-selective HEHAHA) (34)
              ▫ TC sequences (Kin-HEHAHA) (37)
  • Rotating frame nuclear Overhauser effect (ROE) (30)
        ▪ Broadband ROESY with optimal suppression of Hartmann-Hahn transfer
            ▫ Pulse sequence:
            ▫ JS-ROESY (24)
  • Coherence order selective coherence transfer (22, 29, 31, 67, 68, 71)
  • Heteronuclear decoupling
        ▪ Bandselective heteronuclear decoupling in liquids
            ▫ Pulse sequence:
            ▫ G3-MLEV (17)
  • Homonuclear decoupling in solids
        ▪ Broadband decoupling
           ▫ Pulse sequences: (11, 15)
  • Broadband pulses (79, 86, 91, 93)
  • Pattern pulses (97)
  • Shaped pulses for bandselective inversion of dipolar coupled spins (12, 14)

Anwendungen biologischer Makromoleküle

  • Peptides and Proteins (4, 9, 38, 40, 42, 64, 65)
  • DNA (5)
  • RNA (27, 32)
  • Oligosaccharides (76, 88, 96)